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Abstract: Atmospheric correction of visible/infrared spectra traditionally
involves either (1) physics-based methods using Radiative Transfer Models
(RTMs), or (2) empirical methods using in situ measurements. Here a
more general probabilistic formulation unifies the approaches and enables
combined solutions. The technique is simple to implement and provides
stable results from one or more reference spectra. This makes empirical
corrections practical for large or remote environments where it is difficult to
acquire coincident field data. First, we use a physics-based solution to define
a prior distribution over reflectances and their correction coefficients. We
then incorporate reference measurements via Bayesian inference, leading
to a Maximum A Posteriori estimate which is generally more accurate than
pure physics-based methods yet more stable than pure empirical methods.
Gaussian assumptions enable a closed form solution based on Tikhonov
regularization. We demonstrate performance in atmospheric simulations
and historical data from the “Classic” Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-C) acquired during the HyspIRI mission preparatory
campaign.
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1. Introduction

Remote visible/infrared reflectance spectroscopy provides unique insight into Earth’s ecosys-
tems and surface composition. Investigators measure radiance at many wavelengths, λ , and cor-
rect atmospheric interference to retrieve the apparent surface reflectance ρ(λ ), the Hemispher-
ical Directional Reflectance Function [1], or the related quantity Rrs(λ ), the Remote Sensing
Reflectance [2]. Typical atmospheric correction is based on simulations by Radiative Transfer
Models (RTMs), an approach which is effective but can be sensitive to uncertainty in atmo-
spheric gas and aerosol state. Consequently, empirical methods play a complementary role for
difficult atmospheric conditions.
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Table 1. Mathematical notation
Symbol Interpretation

ρ Apparent surface reflectance, i.e. the HDRF [1]
ρ̂ Estimate of the surface reflectance
ρ0 Top of atmosphere reflectance
ρa Atmospheric path reflectance
F Extra-terrestrial solar irradiance
ψ Solar zenith angle
T Transmittance of gases and aerosols
S Spherical sky albedo
L Measured radiance at sensor
Li Radiance measured at sensor for surface location i
Ls j Simulated radiance measured at sensor for trial s, location j
L′s j Simulated noisy radiance measured at sensor for trial s, location j
ti Reflectance measured in situ for surface location i
ωi Reflectance solution from radiative transfer model at location i
θ Vector of atmospheric state parameters used in radiative transfer model
A Two column data matrix: ones, and radiances
B Two column data matrix: ones, and reflectances
t Vector of reflectances measured in situ at multiple locations
x Vector of linear correction coefficients

xEL Vector of linear correction coefficients from Empirical Line
xBEL Vector of linear correction coefficients from Bayesian Empirical Line

µµµ Mean of correction coefficient prior distribution, typically the vector [0,1]
P Inverse covariance of in situ data, a 2 × 2 matrix
Q Inverse covariance of correction factors, a 2 × 2 matrix

γ jg,γ jo Standard deviations of perturbing gain and offset, independent in each spectrum
γsg,γso Standard deviations of perturbing gain and offset, scene-wide
ηg, ηo Standard deviations of prior gain and offset

ηm Standard deviation of measurement noise
δ Regularization factor ascribed to ηg and ηo

The “empirical line” is one such method that uses in situ measurements of spectrally-
invariant surfaces to fit a linear relationship between sensor readings and reflectance. This re-
quires visiting and measuring many distinct locations in the scene. Assuming invariant targets
can be found, differences in remote and in situ perspectives can still cause discrepancies due
to atmospheric and surface heterogeneity and the interaction of solar angle with self shading
and non-Lambertian surfaces. Overcoming these discrepancies requires tedious measurements
from many diverse locations. Anticipated global mapping applications [3] are particularly chal-
lenging due to large and inaccessible wilderness areas. With few coincident in situ reference
spectra, the resulting corrections can be unstable and sensitive to confounding effects.

Here we present a more general probabilistic formulation to unify RTM and empirical ap-
proaches and enable combined solutions. This significantly improves stability when reference
spectra are sparse, poorly conditioned or inaccurate, and makes empirical corrections practical
for challenging field environments with few reference spectra. The RTM solution places data
in a reflectance representation so that subsequent corrections obey a predictable distribution.
This permits a Bayesian prior on empirical correction coefficients and calculation of the poste-
rior mode using closed-form Tikhonov regularization. The article begins by reviewing standard
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atmospheric correction methods. We describe the proposed approach, and explore its behav-
ior with radiative transfer simulations. Finally, we test its performance on a set of reference
measurements acquired by NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer
(AVIRIS-C) during the HyspIRI mission airborne preparatory campaign. [3].

2. Background

Traditional atmospheric correction algorithms like ATCOR [4], FLAASH [5], and ATREM
[6, 7], exploit a relation between the surface reflectance ρ , the atmospheric path reflectance ρa,
and the top of atmosphere reflectance ρ0 [8]:

ρ0 =
πL

F cos(ψ)
= ρa +

T ρ

1−ρS
(1)

Table 1 describes our notation. Here F represents extra-terrestrial solar irradiance [9, 10], ψ

the solar zenith, T the transmission of gases and aerosols, and S the spherical albedo of the sky.
One such relationship exists for each wavelength, though our notation omits this for clarity.
Typically T , ρa and S are calculated using a radiative transfer solver such as 6s [11, 12, 13] or
DISORT [14]. Some atmospheric and surface parameters may be retrieved on a per-pixel basis
using spectral information [15, 3].

Any inaccuracy in models of gas absorption or calibration can leave residual errors in the
reflectance estimate. These errors have been addressed by a range of different postprocessing
methods. One approach, EFFORT [16], “polishes” the spectra using a generalized set of ref-
erence spectra to quantify and suppress the high frequency noise component of retrievals. Gao
and Liu [17] provide an efficient alternative that reduces residuals relative to a cubic spline
fit. The ATCOR atmosperhic correction package can classify pixels into plant, snow, soil or
other surfaces, then apply appropriate band-by-band multiplicative factors to reduce the high
frequency noise that discriminates the retrieval from the ideal spectrum. Similar methods based
on multiplicative coefficients have been used throughout the HyspIRI preparatory campaign
[3]. These factors can smooth residual roughness in reflectance estimates, but do not typically
compensate for broad spectral features from calibration or scattering effects.

In contrast to RTMs, the empirical line method [18] posits a direct relationship ρ ≈ x1+x2L,
with free parameters x1 and x2. If 1−ρS ≈ 1 this has a natural physical interpretation; Eq. 1
reduces to ρ0 = ρa+T ρ , making the free parameters x1 and x2 proportional to the path radiance
and transmittance respectively. As ρS grows, the parameters lose their physical interpretation,
but the linear model can still be a simple and effective predictor. For notational simplicity we
combine correction coefficients into a vector x = [x1,x2]

T and introduce a data matrix A with
one row Ai = [1,Li] per reference location. Here Li represents the remote radiance measurement
corresponding to the location i, with a corresponding in situ reflectance measurement ti. Thus,
the predicted reflectance ρ̂ is given by ρ̂ = Ax. We group the target reflectance values in a
vector t = [t1, t2 . . .]

T with one element per location. The correction coefficients, written xEL,
should minimize sum squared prediction error:

xEL = argminx
(
‖Ax− t‖2 )= (ATA)−1ATt (2)

The classical solution does not constrain the magnitude of the correction, which is appropriate
because its numerical scaling is variable and scene-dependent.

Some proposed hybrids combine RTMs and empirical methods. Teillet and Fedosejevs use
an in-scene dark target to estimate the energy scattered into the beam [19]. This estimates of ρa,
while an RTM calculates the other terms. Moran starts with the empirical line method, but then
uses atmospheric radiative transfer models or dark targets to estimate the additive term x1 [20].
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This leaves one free parameter, x2, to be fit by reference targets. However, in principle both in
situ references and models provide some information about the whole system; a handful of in
situ reference targets may be insufficient, but the empirical estimate will eventually outperform
as more field measurements are added. An optimal solution would incorporate all information
with appropriate weight to empirical and data driven methods based on the certainty of each
source.

3. Approach

Bayesian inference provides a formal approach to combine RTM calculations and in situ
measurements. The proposed approach uses an RTM, informed by known observing geome-
try and estimated atmospheric state, θθθ , to calculate an initial guess at each reference location
i, ωi, in reflectance units. The resulting data matrix B consists of rows Bi = [1,ωi]. We posit
correction factors are distributed about the identity transformation, given by a coefficient vector
µµµ = [0,1] such that:

ρ̂i = Biµµµ
T = [1,ωi] [0,1]

T (3)

More generally, we take the linear coefficients x to have a Gaussian prior N (µµµ,Q−1) with
mean µµµ , precision matrix Q and covariance matrix Q−1. We posit measurement errors are
distributed according to a zero-mean Gaussian N (0,P−1). Ascribing prior standard deviations
ηg, ηo, and ηm to gain, offset, and the in situ channelwise measurement noise respectively, we
have:

QQQ =

[
η2

o 0
0 η2

g

]−1

PPP =

[
η2

m 0 . . .
0 . . . 0
. . . 0 η2

m

]−1

(4)

In practice errors are not necessarily independent in each channel, nor are they Gaussian-
distributed. However, the assumption is convenient and proves adequate in the airborne ex-
periments that follow. This leads to the following posterior reflectance:

p(ρi,x | θθθ) ∝ p(ρi | x,θθθ) p(x | θθθ)
∝ p(ρi | x) p(x | θθθ)

log p(ρi,x | θθθ) ∝ −z1(Bx− t)T P(Bx− t)− z2(x−µµµ)T Q(x−µµµ) (5)

Here z1 and z2 are normalizing constants. This is equivalent to Generalized Tikhonov Regres-
sion [21], which seeks the solution xBEL minimizing the following objective function:

xBEL = argminx
(
‖Bx− t‖2

P +‖(x−µµµ)‖2
Q
)

(6)

Here ‖x‖2
Q signifies the norm xT Qx, and ‖x‖2

P is the norm xT Px. This formulation penalizes
correction coefficients that depart from the RTM prior. It has a Bayesian interpretation as a
Maximum A Posteriori (MAP) estimator, maximizing the posterior density of the Gaussian
prior and Gaussian data likelihood terms. The well-known solution has closed form [22]:

xBEL = µµµ +(BT PB+Q)−1BT P(t−Bµµµ) (7)

For the controlled experiments that follow, we ascribe a regularization factor δ to both gain
and offset priors such that ηo = ηg = δ . The use can set δ with domain knowledge or (as
in our experiments) formal cross validation. It acts as a regularization term which balances
the influence of the RTM and in situ data. We will find that performance is insensitive to this
parameter, so it is not necessary to estimate it perfectly. To derive P−1, we simply estimate
diagonal values η2

m using the sample variance.
This leads to a simple procedure, which is performed separately for each wavelength:
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1. Acquire a set of in situ reflectance measurements ttt = [t1, t2, . . .]T , one per reference loca-
tion.

2. Using a RTM-based atmospheric correction, transform each reference location’s radiance
Li to an estimate of surface reflectance, ωi

3. Associate the remote and in-situ spectra, and construct a data matrix B with one row
Bi = [1,ωi] per in situ measurement ti.

4. Construct a 2× 2 covariance matrix Q−1 comprised of small diagonal coefficients δ 2;
this represents the certainty of atmospheric correction.

5. Construct a diagonal covariance matrix P−1 representing measurement variance for each
remote spectrum.

6. Use Eq. (7) to find linear correction coefficients xBEL = [x1,x2]
T .

7. Use the linear correction coefficients to correct all RTM-derived reflectance estimates
using ρ̂ = x1 + x2ω

The following section explores the method’s performance and its sensitivity to δ .

4. Evaluation

We perform two experiments to evaluate the Bayesian approach. The first experiment uses
simulations to compare its performance with status quo correction methods, and to explore its
sensitivity to the prior. The second experiment demonstrates performance on an actual airborne
data acquired by the AVIRIS-C instrument.

4.1. Simulations

We first characterize performance in simulation with 20 visible/infrared spectra from the USGS
spectral library [23]. These spectra span a diverse range of shapes and magnitudes, including
urban surfaces such as asphalt and building materials as well as natural surfaces such as vege-
tation, open water, snow, and mixtures of vegetation and soil. We resample these spectra to the
wavelengths of NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer, AVIRIS-C
[24], and simulate atmospheric interference using the DISORT radiative transfer model [14].
This calculates absorption and scattering by a typical 20 layer midlatitude summer atmosphere,
with gas optical cross sections and aerosol parameterizations from the LibRadTran suite [25].
We simulated the conditions of an actual AVIRIS-C overflight which took place on 7 May 2014
at 20 km altitude, with a nadir-pointed instrument and solar elevation of 68 degrees. Aerosol
properties were based on models of Shettle [26]. The optical depth was 0.25, with a rural type
aerosol in the boundary layer, background aerosol above 2 km, and spring-summer conditions.
The atmosphere was a mid latitude summer model with the H2O column scaled to contain 2 cm
precipitable water vapor.

Our experiment considers a set of independent trials (or scenes) s, each containing many
spectra j associated with top of atmosphere radiances Ls j. To simulate error-prone observa-
tions, we perturb these radiances to yield noisy observations L′s j. The perturbations incorporate
a scene-wide random gain and offset of φsg and φso with standard deviations γsg and γso respec-
tively. These represent systematic errors due to uncertainty in atmospheric constituents and in-
strument calibration that the Bayesian empirical line aims to overcome. They also account for
modeling approximations such as neglected coupling between absorption and scattering. We
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Fig. 1. Performance as a function of the regularization factor δ and number of reference
spectra. The empirical solution is favorable as more reference spectra become available.

use conservative values of 1%, typical of radiometric calibration accuracy for imaging spec-
trometers in the visible/infrared range [24].

φsg = N (1,γ2
sg) φso = N (0,γ2

so) (8)

We also apply a separate gain and offset (with standard deviations γ jg and γ jo respectively) to
each spectrum. This signifies measurement noise; we use 1%, which is a conservative choice
considering typical instrument SNR [24]. The perturbed spectrum can be written:

L′s j = Ls jN (φsg,γ
2
jg)+N (φso,γ

2
jo) (9)

The relative performance ranking of different algorithms is insensitive to the magnitude of this
noise. After introducing errors, we simulate the correction process of Eq. (1) and applied the
Bayesian empirical line adjustment. We select 1 to 5 in situ reference spectra as the training set,
and calculate prediction accuracy on the held-out remainder based on the Root Mean Squared
Error (RMSE) while ignoring water absorption bands. For each number of reference spectra,
the different possible combinations of training and testing samples define a mean and standard
deviation for performance.

The regularization δ enables a continuum of possibilities ranging from a completely con-
strained correction, equivalent to the original RTM solution, to a completely unconstrained
correction, equivalent to a pure empirical method. Figure 1 illustrates the effect of changing
the regularization parameters to favor RTM or empirical behavior. As the number of reference
spectra increase, the position of the global error minimum shifts to the right. In other words, the
certainty of the empirical correction improves and larger values of δ became optimal. Addition-
ally, the position of the global error minimum shifts downward, but with diminishing returns
for large numbers of in situ reference spectra. We note that there is always significant benefit to
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Fig. 2. DISORT simulations compare multiple correction methods: the traditional empir-
ical line (EL); the refined empirical line of [20] (REL); spectral polishing (SP); and the
Bayesian empirical line correction (BEL). Arrowheads indicate 1-σ error bars and/or per-
formance means that lie outside the chart.

incorporating a model prediction: some degree of Bayesian regularization always outperforms
the pure extremes. In other words, even single reference target or an error-prone atmospheric
model provides some beneficial information. Another important result is that the regularized
empirical line is stable over a wide parameter range. Performance degrades appreciably only
when values of δ depart from the optimum by a factor of five or more. This suggests that the
method can glean benefits even when reliable noise and error predictions are not available.

Figure 2 compares the relative performance of the proposed approach, a pure empirical line,
spectral polishing [16], and the hybrid correction strategy of Moran [20]. We use 1σ pertur-
bations at 1% of the total signal level. The graph shows 1σ error bars, with arrows signifying
intervals that extend outside the plotted area. When all accuracies lie outside the plotted area,
we signify this with delta symbols at the top of the plot. The classical empirical line was nu-
merically stable after three training spectra, and approached the optimum after five. The refined
empirical line approaches asymptotic error with about three training targets. The Bayesian ap-
proach, exploiting both model and in situ information, outperforms all alternatives while reduc-
ing the standard deviation for all training set sizes. It provides a non-degenerate solution from
a single training spectrum.

4.2. Airborne data

Our second evaluation uses airborne data: the ATREM-derived HyspIRI preparatory reflectance
product [3]. This algorithm typifies the RTM approach. We consider multiple reference targets
imaged by AVIRIS-C during flights over California during the HyspIRI mission preparatory
campaign [3] (Fig. 3). Eight terrestrial reference targets fall within a single long flightline from
the 2013 data collection year, the “Soda Straw” spanning several degrees of latitude across
the state of California. The targets include a range of light and dark surfaces at varying alti-
tudes (Fig. 4). The reflectance profiles are measured in situ using a Visible Shortwave Infrared
(VSWIR) field spectrometer and a reference spectralon panel, following the procedure outlined
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Fig. 3. The reference spectra in our AVIRIS-C study lie in a large flightlines transecting
part of the US state of California.
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Fig. 6. Performance of multiple methods for AVIRIS-C data: the traditional empirical line
(EL); the refined empirical line of [20] (REL); spectral polishing (SP); and the Bayesian
empirical line correction (BEL). Convergence rates resemble Fig. 2.

in [3].
Figure 5 shows a typical result applying the Bayesian empirical line strategy to a held-out test

spectrum. As expected, the reflectance shape and magnitude better match the ground reference
data. We also compare performance against other correction methods by fitting these factors
using subsets of 1 to 5 training targets, and then evaluate performance using the remainder. The
result appears in Fig. 6 with error bars indicating 1σ performance for all cross validation trials.
The accuracy profiles and relative performance rankings of the algorithms support the simula-
tion results. Without exception, all methods’ performance improves monotonically a more in

#253097 Received 13 Nov 2015; revised 13 Jan 2016; accepted 15 Jan 2016; published 27 Jan 2016 
© 2016 OSA 8 Feb 2016 | Vol. 24, No. 3 | DOI:10.1364/OE.24.002134 | OPTICS EXPRESS 2143 



situ measurements are available. Overall, the Bayesian method provides the best stability and
fastest convergence.

5. Discussion and conclusions

This article synthesizes two traditional approaches for atmospheric correction of visi-
ble/infrared spectra: the empirical line and RTM-based methods. Bayesian inference provides
a rigorous formal framework for incorporating both information sources, leading to more sta-
ble results. In our experiments, it approaches optimal accuracy with only one or two in situ
measurements. This capability can lower the barrier to entry for a broader range of scientific,
commercial, and public policy spectroscopy applications. Specifically, it makes accurate empir-
ical line corrections practical for large wilderness scenes where it can be costly or impractical
to obtain high quality coincident field data.

Future work could investigate alternative approaches to synthesize multiple data sources.
Here we treat the RTM and in situ data collection as two separate processes. But if the in situ
references did not exhibit significant systematic errors, each reference might instead be incor-
porated independently through multiple Bayesian updates. This would emphasize the measure-
ment data and possibly simplify selection of regularization parameters (that would relate more
directly to instrument SNR). Multiple RTM solutions from different models might be incorpo-
rated in a similar fashion, resulting in an ensemble estimator. Such modeling issues have a long
history in data fusion research, and imaging spectroscopy on global scales could benefit from
that foundation.

The probabilistic method points to the possibility of treating physical atmospheric parame-
ters as random variables rather than targets of a fitting procedure. In this approach, pursued by
researchers like Frouin and Pelletier [27], the atmospheric correction estimates the distribution
using conventional or Bayesian inference. The ability to characterize the full posterior distribu-
tion over atmospheres, and propagate this information into uncertainties about the atmospheric
retrieval, holds great potential to improve the quality and interpretability of atmospheric cor-
rection.
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